This training supplies the tools needed to describe and apply the workflow for dynamic analysis in FLAC3D, demonstrating a comprehensive understanding of each step involved, including model setup, boundary conditions, input signal application, and damping, to effectively analyze dynamic behavior in geotechnical simulations.
Explore IMAT’s latest upgrade, uniting open-pit and underground mining capabilities for faster, smarter, and more efficient modeling.
In this tutorial we will go over meshing, from the creation of a 2D mesh and how to import it to MINEDW, to the inclusion of topography, layers, and pinch-outs to different areas of interest in the model.
In this tutorial we will take a look at the different boundary conditions available to the user, and we will go over some examples of different scenarios in which they would be used.
The Python programming language is embedded inside FLAC3D 6 and extended to allow FLAC3D models to be manipulated from Python programs. This webinar recording provides a brief introduction to Python scripting and includes many examples of using Python with FLAC3D.
The Boliden Kevitsa open pit mine is revising its strategic plan with a new pit optimization project undertaken to investigate an increase in production.
This paper presents the formulation of a constitutive model to simulate the behavior of foliated rock mass. The 3D elastoplastic constitutive model, called Comba, accounts for the presence of arbitrary orientations of weakness in a nonisotropic elastoplastic matrix.