This example describes how to import and use structural data generated by Rockmass Technologies mapping instrumentation.
This FLAC 8.1 tutorial demonstrates how to establish the stresses in the dry embankment prior to the formation of the upstream reservoir.
Building Blocks works seamlessly with the FLAC3D 6.0 extruder tool and new Model Pane. Building Blocks includes a library of model primates and users can also add and load their own building block sets.
Mesh quality is crucial for the stability, accuracy, and fast convergence of numerical simulations. However, given the geometrical complexity of some models and the tools available for mesh creation, it is often necessary to accept meshes that deviate significantly from the known ideal shape.
Field monitoring programs (e.g., convergence measurements and stress measurements in the support system) play an important role in following the response of the ground and of the support system during and after excavation. They contribute to the adaptation of the excavation and support installation method and the prediction of the long-term behavior. In the context of the Lyon–Turin link project, an access gallery (SMP2) was excavated between 2003 and 2010, and a survey gallery (SMP4) has been excavated since 2017.
We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.