Cable elements in 3DEC may be assigned a tensile yield force limit and an axial rupture strain in order to simulate cable rupture. 3DEC can also simulate the shearing resistance along the cable length between the grout and either the cable or the host material.
In this example, you will see how to create your own custom plot of drill core data containing location, orientation, depth, and geotechnical data (lithography. fracture count, rock strength, weathering, and RMR).
The realism of Discrete Fracture Network (DFN) models relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. In this study, we introduce correlations between fractures by enhancing the genetic model (UFM) of Davy et al. [1] based on simplified concepts of nucleation, growth and arrest with hierarchical rules.
In this study, we address the issue of using graphs to predict flow as a fast and relevant substitute to classical DFNs. We consider two types of graphs, whether the nodes represent the fractures or the intersections between fractures.
A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest.