Introduction to Python scripting by reviewing key concepts and through demonstrations. Part 1 focuses on installing Python, variables and types, conditions and loops, and functions.
In this tutorial we will briefly cover the MINEDW user interface, its components, and the MINEDW Menu with the different options and tools it provides to build numerical models.
In this example, you will see how to create your own custom plot of drill core data containing location, orientation, depth, and geotechnical data (lithography. fracture count, rock strength, weathering, and RMR).
Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure.
Field monitoring programs (e.g., convergence measurements and stress measurements in the support system) play an important role in following the response of the ground and of the support system during and after excavation. They contribute to the adaptation of the excavation and support installation method and the prediction of the long-term behavior. In the context of the Lyon–Turin link project, an access gallery (SMP2) was excavated between 2003 and 2010, and a survey gallery (SMP4) has been excavated since 2017.
In this study, we address the issue of using graphs to predict flow as a fast and relevant substitute to classical DFNs. We consider two types of graphs, whether the nodes represent the fractures or the intersections between fractures.