Homogeneous Embankment Dam Analysis (Part 1 of 3)

This FLAC 8.1 tutorial demonstrates how to establish the stresses in the dry embankment prior to the formation of the upstream reservoir.

Generating Videos with FLAC3D Plots

This tutorial reviews how you can generate movies from plots with FLAC3D and most Itasca software.

Plotting 3D Isosurfaces

This tutorial demonstrates how you can add isosurfaces to your 3D Itasca model plots.

On the Density Variability of Poissonian Discrete Fracture Networks, with application to power-law fracture size distributions

This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators.

Flowback Test Analyses at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site

Injection testing conducted in 2017 and 2019 at the Frontier Observatory for Research in Geothermal Energy site in Utah evaluated flowback as an alternative to prolonged shut-in periods to infer closure stress, formation compressibility, and formation permeability. Flowback analyses yielded lower inferred closure stresses than traditional shut-in methods and indicated high formation compressibility, suggesting an extensive fractured system. Numerical simulations showed rebound pressure is not necessarily the lower bound of minimum principal stress. Stiffness changes can be identified as depletion transitions from hydraulic to natural fractures. The advantage if flowback is reduced time to closure.

Tunnelling and reinforcement in heterogeneous ground – A case study

Abstract

A case study of tunnelling in heterogeneous ground conditions has been analysed. The case involves a tunnel excavated in mixed-face conditions, where the main host material was rock, but for a distance of about 30 m, the tunnel had to be driven through a thick layer of soil, primarily moraine and sandy soil materials.During tunnel drifting, a "chimney" cave developed through the soil layer, resulting in a surface sinkhole.This case was analysed using a three-dimensional numerical model with the FLAC3D software code, in which the soil stratigraphy and tunnel advance were modelled in detail. Tunnel and soil reinforcement in the form of jet grouting of the soil, pipe umbrella arch system, bolting, and shotcreting, was explicitly simulated in the model. The studyaimed at comparing model results with observations and measurements of ground behaviour, and to replicate the major deformation pattern observed. The modelling work was based on a previous generic study in which various factors influencing tunnel and ground surface deformations were analysed for different cases of heterogeneous ground conditions.Model calibration was performed through adjusting the soil shear strength. The calibration provided a qualitatively good agreement with observed behaviour. Calculated deformations on the ground surface were in line with measured deformations, and the location of the tunnel collapse predicted by the model. The installed tunnel reinforcement proved to be critical to match with observed behaviour. Without installed pipe umbrella arch system, calculated deformations were overestimated, and exclusion of jet grouting caused collapse of the tunnel. These findings prove that, in particular, jet grouting of the soil layer was necessary for the successful tunnel advance through the soil layer.

  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....